Build AI Chatbot into Android App Big Nerd Ranch Style
Integrating an AI-powered chatbot into your Android app is exciting—and doing it with the Big Nerd Ranch approach ensures you learn by building and hugging best practices every step of the way. This guide walks through hands-on creation using Kotlin, Retrofit, Jetpack, and a free AI API.
Why Follow Big Nerd Ranch Style?
Big Nerd Ranch emphasizes:
- Hands-on learning with real app-building
- Clearly organized architecture—what goes in Activities, ViewModels, Repositories
- Pro-level tooling like Retrofit, coroutines, dependency injection
By following this method, not only do you end up with a working chatbot, but you also internalize clean Android development patterns.
What Tools and Technologies You’ll Use
Here’s a quick snapshot:
- Kotlin – modern, concise language
- Android Studio – IDE with Jetpack support
- Retrofit + OkHttp + Coroutines – fast, async HTTP
- Jetpack – ViewModel, LiveData, Room
- Dependency Injection – Hilt (or manual)
- AI Service – OpenAI with free trial or an open-source alternative
- External link: OpenAI docs: https://beta.openai.com/docs/
Step 1: Set Up Your Android Project
Start a clean Android project:
- Create a new Kotlin project in Android Studio.
- Set up modules/packages:
ui.chat
data.remote
data.local
domain
In your build.gradle
:
gradleCopyEditimplementation "com.squareup.retrofit2:retrofit:2.9.0"
implementation "com.squareup.retrofit2:converter-moshi:2.9.0"
implementation "org.jetbrains.kotlinx:kotlinx-coroutines-android:1.6.0"
implementation "androidx.lifecycle:lifecycle-viewmodel-ktx:2.4.1"
implementation "androidx.room:room-ktx:2.4.2"
implementation "com.google.dagger:hilt-android:2.42"
kapt "com.google.dagger:hilt-compiler:2.42"
Step 1.1: Adding Retrofit and Coroutines
Define your API interface:
kotlinCopyEditinterface ChatApi {
@POST("chat/completions")
suspend fun sendMessage(@Body prompt: Prompt): ChatResponse
}
Set up Retrofit with a coroutine adapter:
kotlinCopyEditval retrofit = Retrofit.Builder()
.baseUrl("https://api.openai.com/v1/")
.addConverterFactory(MoshiConverterFactory.create())
.build()
val api = retrofit.create(ChatApi::class.java)
Step 1.2: Configuring Dependency Injection
Using Hilt:
kotlinCopyEdit@Module
@InstallIn(SingletonComponent::class)
object NetworkModule {
@Provides
fun provideRetrofit(): Retrofit = ...
@Provides
fun provideChatApi(retrofit: Retrofit): ChatApi = retrofit.create()
}
Inject ChatApi
in your ChatRepository
.
Step 2: Designing the Chat UI
Define a RecyclerView with two view types—user and bot message.
Message(val text: String, val isUser: Boolean, val timestamp: Long)
ChatAdapter
usesListAdapter<Message>
In activity_chat.xml
, include:
xmlCopyEdit<RecyclerView android:id="@+id/recycler_view" .../>
<EditText android:id="@+id/input_text" .../>
<Button android:id="@+id/send_button" .../>
Step 2.1: ViewModel–LiveData Integration
In ChatViewModel
:
kotlinCopyEditval messages = MutableLiveData<List<Message>>()
fun sendMessage(text: String) = viewModelScope.launch {
val userMsg = Message(text, true, System.currentTimeMillis())
_messages.postAdd(userMsg)
val response = repository.sendToAi(text)
_messages.postAdd(Message(response, false, System.currentTimeMillis()))
}
Observe in your Activity/Fragment and update the adapter.
Step 3: Connecting to an AI Service
Register at OpenAI and obtain an API key (you can use their free trial). Other open-source alternatives include the Hugging Face Inference API.
When calling:
kotlinCopyEditsuspend fun sendToAi(prompt: String): String {
val response = chatApi.sendMessage(Prompt(...))
return response.choices.first().text
}
Handle ApiException
for rate limiting or server errors.
Step 3.1: Handling Input/Output
Wrap your API result in a sealed class:
kotlinCopyEditsealed class Result<out T> {
data class Success<out T>(val data: T): Result<T>()
data class Error(val exception: Throwable): Result<Nothing>()
}
Use this to show loading indicators and retry options in the UI.
Step 4: Chat Logic Architecture
Use MVVM:
ChatRepository
– handles network and local DB savesChatUseCase
– features to send a message and retrieve historyChatViewModel
– orchestrates logic and updates UI
Step 4.1: Storing Chat History
Set up Room:
kotlinCopyEdit@Entity data class MessageEntity(...)
@Dao interface MessageDao {
@Insert suspend fun insert(vararg msgs: MessageEntity)
@Query("SELECT * FROM messages ORDER BY timestamp")
fun getAll(): Flow<List<MessageEntity>>
}
In ViewModel, collect MessageDao.getAll()
to populate UI on launch.
Step 5: UI Enhancements
- Show a “typing…” indicator when awaiting response
- Include message timestamps formatted with
DateUtils.getRelativeTimeSpanString()
- Add emoji support via
EmojiCompat
Step 6: Testing and Polish
- Unit tests for ViewModel logic
- Repository tests mocking
ChatApi
with Mockito - UI tests using Espresso to verify send/receive flow
Also read-Top 5 AI Features in 2025 Smartphones That Actually Matter
Q&A Section
Q1: Which AI service is free?
OpenAI offers a free trial; you can also explore free Hugging Face models: https://huggingface.co/models
Q2: Is Hilt mandatory?
Not mandatory—Big Nerd Ranch style encourages modular architecture, and Hilt simplifies DI dramatically.
Q3: Can I support images in chat?
Yes. Send image prompts through DALL·E or similar, store URLs in your Message
model, and use Glide
to load images in RecyclerView.
Q4: What about offline usage?
Implement a local model using TensorFlow Lite for limited capabilities.
Q5: How to prevent UI blocking?
Always call network and DB operations inside viewModelScope.launch
or background dispatchers.
Q6: Can we secure the API key?
Never commit keys in code. Use Android NDK or store in a remote backend that you call securely.
Conclusion & Next Steps
By adopting the Big Nerd Ranch style, you’ve built a clean, testable, and modular AI chatbot module for Android using Kotlin, Retrofit, Jetpack, and an AI backend. You’ve learned:
- Project structure and dependency setup
- UI design and RecyclerView patterns
- Network integration with Retrofit + coroutines
- DI with Hilt and architecture layers
- Local storage with Room
- Testing best practices
Next steps you can take:
- Add conversation context handling and memory
- Support offline mode with on-device models
- Build a backend proxy to protect your API key
- Extend the UI with voice input, attachments, or chat themes